Cyclic Subgroups are Quasi-isometrically Embedded in the Thompson-Stein Groups

نویسنده

  • Claire Wladis
چکیده

We give criteria for determining the approximate length of elements in any given cyclic subgroup of the Thompson-Stein groups F (n1, ..., nk) such that n1 − 1|ni − 1 ∀i ∈ {1, ..., k} in terms of the number of leaves in the minimal tree-pair diagram representative. This leads directly to the result that cyclic subgroups are quasi-isometrically embedded in the ThompsonStein groups. This result also leads to the corollaries that Zn is also quasiisometrically embedded in the Thompson-Stein groups for all n ∈ N and that the Thompson-Stein groups have infinite dimensional asymptotic cone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-isometrically Embedded Subgroups of Braid and Diffeomorphism Groups

We show that a large class of right-angled Artin groups (in particular, those with planar complementary defining graph) can be embedded quasi-isometrically in pure braid groups and in the group Diff(D2, ∂D2, vol) of area preserving diffeomorphisms of the disk fixing the boundary (with respect to the L2-norm metric); this extends results of Benaim and Gambaudo who gave quasi-isometric embeddings...

متن کامل

Geometric quasi-isometric embeddings into Thompson's group F

We use geometric techniques to investigate several examples of quasi-isometrically embedded subgroups of Thompson’s group F . Many of these are explored using the metric properties of the shift map φ in F . These subgroups have simple geometric but complicated algebraic descriptions. We present them to illustrate the intricate geometry of Thompson’s group F as well as the interplay between its ...

متن کامل

The geometry of right angled Artin subgroups of mapping class groups

We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasiisometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus h surfaces (for any h at least 2)...

متن کامل

Quasi - Isometrically Embedded Subgroups of Thompson ’ S Group F 3

The goal of this paper is to construct quasi-isometrically embedded subgroups of Thompson’s group F which are isomorphic to F × Zn for all n. A result estimating the norm of an element of Thompson’s group is found. As a corollary, Thompson’s group is seen to be an example of a finitely presented group which has an infinite-dimensional asymptotic cone. The interesting properties of Thompson’s gr...

متن کامل

Anti-trees and right-angled Artin subgroups of braid groups

We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree. Consequently, G admits quasi-isometric group embeddings into a pure braid group and into the area-preserving diffeomorphism groups of the 2–disk and the 2–sphere, answering questions due to Crisp–Wiest and M. Kapovich. Another co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011